Magnetic stimulator prototype design non-invasive uniform pulsed and test functional with fantoma fast oriented bone healing
DOI:
https://doi.org/10.52109/cyp2022438Keywords:
Pulsed magnetic field, triaxial arrangement, phantom, plastinated, source switching, PWM.Abstract
The prototype is non-invasive nature and is made up of an electronic pulse generator circuit, which will be amplified by a 1500 W power source. The electrical power pulse will feed 3 pairs of Helmholtz coils in a triaxial arrangement. These coils will produce a uniform magnetic field crossed over a defined volume that will interact with the fracture to achieve bone tissue regeneration.
The equipment contribution and innovation that it produces a uniform magnetic field crossed in three dimensions, considerably improving the therapy so that the magnetic field will be distributed and interact throughout the volume of the fractured bone.
First, a mathematical model was developed regarding the behavior of the magnetic field. Second, the behavior of the magnetic field in the entire volume of the fractured bone was simulated, that is, the part where the patient will receive the magnetic field as therapy, and where the two Helmholtz coils will separate. For this purpose, three pairs of Helmholtz coils were built.
It should be noted that a study and simulation of the triaxial arrangement of the coils was previously made with the Solid Work software. Likewise, for this purpose, a switched electrical source (switching) of 1500 W of power and a PWM pulse width modulator with a frequency adjustment range of 1 Hz to 100 kHz were acquired, both were connected to a power transistor. to amplify the pulse power.
Regarding the stationary magnetic field, the homogeneity of the field in each Helmholtz coil was studied, knowing the homogeneity of the magnetic field in the three pairs of coils, triaxial disposition studies were carried out for the homogeneity of the magnetic field on the head of a femur, of an acrylic phantom filled with water, and in the plastination of a leg study the behavior of the magnetic field on human tissue characteristics. Finally we process the data with Matlab software to evaluate the magnetic field homogeneity.
Downloads
References
Abadía, C., & Mesén, A. (2008). Eficacia de la Magnetoterapia en Pacientes con Osteoartrosis. Rev. Medica de Costa Rica y Centroamerica, 15 - 20.
Azpúrua, M. (2012). A semi-analytical method for the design of coilsystems for homogeneous magnetostatic field generation. Progress In Electromagnetics Research B, 171-189. https://doi.org/10.2528/PIERB11102606
Bardasano, J., & Elorrieta, J. (2000). Bioelectromagnetismo Ciencia y Salud. Mc Graw Hill.
Bary, W. W., Kris, C., Stuchly, M. A., Jefrey, D. S., Karl, C. D., Calvin, E. W., . . . Mark, A. W. (1994). Design and fabrication of well confined uniform magnetic field exposure systems. Bioelectromagnetics, 15, 563 - 577. https://doi.org/10.1002/bem.2250150610
Bassett, C. A. (1989). Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). Critical Reviews in Biomedical Engineering, 17, 451-529.
Campbell, W. (1967). Geomagnetic pulsations in physics of geomagnetic phenomena. New York: Matsushita and campbell.
Christopher, C. D., Ian, B., & Mays, L. S. (1999). Food and drug administration low-level extremely-low-frequency magnetic field exposure facility. Bioelectromagnetic, 20, 203 -215. https://doi.org/10.1002/(SICI)1521-186X(1999)20:4<203::AID-BEM1>3.0.CO;2-L
Crosser, M., & S., S. (2010). On the Magnetic Field Near the Center of Helmholtz Coils. Review of scientific Instruments, 81.
Daish, C., Blanchard, R., Fox, K., Pivonka, P., & E., P. (2018). The Application of Pulsed Electromagnetic Fields (PEMFs) for Bone Fracture Repair: Past and Perspective Findings. Annals of Biomedical Engineering.
DeTroye, D. J., & Chase, R. J. (1994). The Calculation and Measurement of Helmholtz Coil Fields. Army Research laboratory ARL-TN-35.
Galkowski, V., Brad, P., Brian, D., & Dick, D. (2009). Bone stimulation for fracture healing: What's all the fuss? Indian J Orthop, 117 - 120. https://doi.org /10.4103/0019-5413.50844
Glenn, B., & Bell, T. (1989). Exposure System for Production of Uniform Magnetic Fields. Journal of Bioelectricity, 147 -148.
Goodwin, T. J., & Clayton, R. P. (2009). Apparatus and Method for enhancing tissue repair in mammals. Patent N° US 7601 114 B2.
Huac, H., Yanga, W., Zengb, Q., Yan, W., Zhuc, B., & Liua, W. (2020). Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders. Biomedicine Pharmacotherapy. https://doi.org/10.1016/j.biopha.2020.110767.
Irving, H. (2016). Physics of the Human Body. New York: Editorial Springer.
Istiaque, A., Taghrid, I., Irena, C., & Elena, P. (2013). Evaluation of the effects of Extremely Low Frequency (ELF) Pulsed Electromagnetic Fields (PEMF) on survival of the bacterium Staphylococcus aureus. EPJ Nonlinear Biomedical Physics .
Kalaivani, G., Akelayil, C., & Chidambram, B. (2009). Low frequency pulsed electromagnetic field – A viable alternative therapy for arthritis. Indian Journal of Experimental Biology, 939 -948.
Kirschvink, J. L. (1992). Uniform magnetic fields and double-wrapped coil systems . Bioelectromagnetic, 13, 401 - 411. https://doi.org/10.1002/bem.2250130507
Markov, M. S. (2007). Expanding use of pulsed electromagnetic field therapies. Electromagnetic Biology and Medicine, 257-274. https://doi.org/10.1080/15368370701580806
Niubó, E. M., & Lahera, C. R. (2010). Magnetoterapia para alivio del dolor por artrosis cervical. Rev. Cubana Medisan, 161-168.
Persinger, M. A., Ludwig, M. A., & Ossenkopp, K.-P. (1973). Psychophysiological Effects of Extremely Low Frequency Electromagnetic Fields. Percept Mot Skills, 1139-1151.
Polk, C. (1996). Handbook Biological Effects of Electromagnetic Fields, CRC Press Boca Raton.
Sato, S., Sakaguichi, S., Futamata, K., & Katou, K. (2000). Coil Optimization for Homogeneous Magnetic Field with Small. IEEE Transactions on Magnetics, 649 - 653. https://doi.org/10.1109/20.877533
Shupak, N. (2003). Therapeutic uses of pulsed magnetic- field exposure: a review. Radio Science Bulletins, 9 -32.
Siddharth, B. R., Weller, J., Dawn, D.-H., Tara, W., Lynn, K., Frank, S. P., . . . Alex, W. T. (2010). Micronuclei in the blood and bone marrow cells of mice exposed to specific complex time-varying pulsed magnetic fields. Bioelectromagnetics, 31, 445 - 453. https://doi.org/10.1002/bem.20576
Siyi Zhu, H. H., Chi, Z., Haiming, W., Chengfei, G., Xijie, Y., & Chengqi, H. (2017). Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetic. https://doi.org/10.1002/bem.22065
Suarez, G. (2022). Diseño de prototipo estimulador magnético no invasivo de pulsado uniforme y prueba funcional con fantoma orientado a rápida cicatrización ósea. Lima: Tesis de maestria PUCP.
Valero, A. (1994). Interacción de los campos electromagnéticos de baja frecuencia en las Hiperlipidemias. Madrid: Tesis doctoral Universidad Complutense de Madrid.
Valero, A. R. (1994). Interacción de los campos electromagnéticos de baja frecuencia en las Hiperlipidemias. Tesis doctoral Universidad Complutense de Madrid.
Xu, Z., Xiaoli, L., Leiting, P., & Imshik, L. (2010). Magnetic fields at extremely low-frequency (50 Hz, 0.8 mT) can induce the uptake of intracellular calcium levels in osteoblasts. Biochemical and Biophysical Research Communications, 396, 662-666. https://doi.org/10.1016/j.bbrc.2010.04.154
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Asociación de Consultores y Profesionales Ambientales y Forestales del Perú

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.